Compare commits
6 Commits
2f357e06fc
...
7a9e13814e
Author | SHA1 | Date | |
---|---|---|---|
|
7a9e13814e | ||
|
580318ac13 | ||
|
00d34bb0eb | ||
|
e78d54c45f | ||
|
7096394f76 | ||
|
fec2806d58 |
@ -13,9 +13,17 @@
|
|||||||
\langsubsection{Magma unital}{Unital magma}
|
\langsubsection{Magma unital}{Unital magma}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:unital_magma}
|
\begin{definition_sq} \label{definition:unital_magma}
|
||||||
Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a = a$.
|
Un magma \ref{definition:magma} $(E, \star)$ est dit \textbf{unital} si $\exists 0_E \in E, \forall a \in E, 0_E \star a = a \star 0_E = a$.
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
|
\begin{theorem_sq}
|
||||||
|
L'élément neutre d'un magma unital $(E, \star)$ est unique.
|
||||||
|
\end{theorem_sq}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Soit $e, f$ deux éléments neutres d'un magma unital $(E, \star)$, par définition d'un élément neutre, on peut poser $e = e \star f = f = f \star e = e$
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\subsection{Monoïde}
|
\subsection{Monoïde}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:monoid}
|
\begin{definition_sq} \label{definition:monoid}
|
||||||
@ -25,15 +33,29 @@
|
|||||||
\langsubsection{Groupe}{Group}
|
\langsubsection{Groupe}{Group}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:group}
|
\begin{definition_sq} \label{definition:group}
|
||||||
Un groupe $(G, \star)$ est un monoïde \ref{definition:monoid} ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a \star a^{-1} = 0_E$.
|
Un groupe $(G, \star)$ est un monoïde \ref{definition:monoid} ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a \star a^{-1} = 0_G$.
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
|
\begin{theorem_sq}
|
||||||
|
L'élément inverse de tout élément d'un groupe $(G, \star)$ est unique.
|
||||||
|
\end{theorem_sq}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Soit $(G, \star)$ un groupe ainsi que $x \in G$ avec $a, b$ deux inverses de $x$. Par définition d'un élément inverse, on peut poser $x \star a = 0_G \equivalence b \star (x \star a) = b \star 0_G \equivalence (b \star x) \star a = b \equivalence a = b$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\langsubsubsection{Groupe abélien}{Abelian group}
|
\langsubsubsection{Groupe abélien}{Abelian group}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:abelian_group}
|
\begin{definition_sq} \label{definition:abelian_group}
|
||||||
Un groupe abélien est un groupe \ref{definition:group} dont la loi de composition est commutative \ref{definition:commutativity}.
|
Un groupe abélien est un groupe \ref{definition:group} dont la loi de composition est commutative \ref{definition:commutativity}.
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
|
\langsubsubsection{Sous-groupe engendré}{Generated sub-group}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:generated_subgroup}
|
||||||
|
Un sous-groupe engendré est un groupe \ref{definition:group} générée par un élément $x$ d'un groupe $(G, \star)$ définie de la manière suivante : $<x> := \{ x^k \mid k \in \Z \} \subseteq G$
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
\langsubsubsection{Morphisme de groupe}{Group morphism}
|
\langsubsubsection{Morphisme de groupe}{Group morphism}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:group_morphism}
|
\begin{definition_sq} \label{definition:group_morphism}
|
||||||
@ -43,7 +65,7 @@
|
|||||||
|
|
||||||
$$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$
|
$$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$
|
||||||
|
|
||||||
Similairement, le diagramme suivant commute :
|
Similairement, un morphisme de groupe est un morphisme tel que le diagramme suivant commute :
|
||||||
|
|
||||||
\[\begin{tikzcd}
|
\[\begin{tikzcd}
|
||||||
X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\
|
X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\
|
||||||
@ -51,8 +73,22 @@
|
|||||||
\end{tikzcd}\]
|
\end{tikzcd}\]
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
\begin{theorem_sq}
|
\begin{theorem_sq} \label{theorem:ab_monomor_imp_ab}
|
||||||
Soit $((G, +), (H, \star)) \in \Grp^2$ et $f$ un épimorphisme entre $G$ et $H$ \ref{definition:epimorphism}.
|
Soit $(G, +)$ et $(H, \star)$ deux groupes \ref{definition:group} et $f$ un monomorphisme entre $G$ et $H$ \ref{definition:monomorphism}.
|
||||||
|
|
||||||
|
$$(H, +) \in \Ab \implies (G, \star) \in \Ab$$
|
||||||
|
\end{theorem_sq}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Soit $((G, +), (H, \star)) \in \Grp^2$ et $f \in \hom(G, H)$ tel que $f$ est un monomorphisme \ref{definition:monomorphism}.
|
||||||
|
|
||||||
|
$f$ est un monomorphisme $\implies \forall (x, y) \in G^2 \land x \neq y, \exists! (a, b) \in H^2 \land f(a) = x \land f(b) = y$
|
||||||
|
|
||||||
|
$\implies x \star y = f(a) \star f(b) = f(b) \star f(a) = y \star x$
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{theorem_sq} \label{theorem:ab_epimor_imp_ab}
|
||||||
|
Soit $(G, +)$ et $(H, \star)$ deux groupes \ref{definition:group} et $f$ un épimorphisme entre $G$ et $H$ \ref{definition:epimorphism}.
|
||||||
|
|
||||||
$$(G, +) \in \Ab \implies (H, \star) \in \Ab$$
|
$$(G, +) \in \Ab \implies (H, \star) \in \Ab$$
|
||||||
\end{theorem_sq}
|
\end{theorem_sq}
|
||||||
@ -62,23 +98,56 @@
|
|||||||
|
|
||||||
$f$ est un épimorphisme $\implies \forall (x, y) \in H^2, \exists (a, b) \in G^2, f(a) = x \land f(b) = y$
|
$f$ est un épimorphisme $\implies \forall (x, y) \in H^2, \exists (a, b) \in G^2, f(a) = x \land f(b) = y$
|
||||||
|
|
||||||
$(G, +) \in Ab \implies x \star y = f(a) \star f(b) = f(a + b) = f(b + a) = f(b) \star f(a) = y \star x$
|
$(G, +) \in \Ab \implies x \star y = f(a) \star f(b) = f(a + b) = f(b + a) = f(b) \star f(a) = y \star x$
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\langsubsection{Corps}{Field} \label{definition:field}
|
\begin{theorem_sq}
|
||||||
|
Soit $(G, +)$ et $(H, \star)$ deux groupes \ref{definition:group} et $f$ un isomorphisme entre $G$ et $H$ \ref{definition:isomorphism}.
|
||||||
|
|
||||||
Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\cartesianProduct)$ notée $(F, +, \cartesianProduct)$.
|
$$(G, +) \in \Ab \equivalence (H, \star) \in \Ab$$
|
||||||
|
\end{theorem_sq}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Soit $((G, +), (H, \star)) \in \Grp^2$ et $f \in \hom(G, H)$ tel que $f$ est un isomorphisme \ref{definition:isomorphism}.
|
||||||
|
|
||||||
|
\impliespart
|
||||||
|
|
||||||
|
$(G, +) \in \Ab$ et $f$ est un isomorphisme et particulièrement un épimorphisme $\implies (H, \star) \in \Ab$ (Voir \ref{theorem:ab_epimor_imp_ab})
|
||||||
|
|
||||||
|
\Limpliespart
|
||||||
|
|
||||||
|
$(H, \star \in \Ab$ et $f$ est un isomorphisme et particulièrement un monomorphisme $\implies (G, +) \in \Ab$ (Voir \ref{theorem:ab_monomor_imp_ab})
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\langsubsection{Corps}{Field}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:field}
|
||||||
|
Un corps $(F, +, \star)$ avec deux lois de composition interne $(+)$ et $(\star)$.
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{$(F, +)$ est un groupe abélien \ref{definition:abelian_group} unital en $0_E$}
|
\item{$(F, +)$ est un groupe abélien \ref{definition:abelian_group} unital en $0_E$}
|
||||||
\item{$(F\backslash\{0_E\}, \cartesianProduct)$ est un groupe \ref{definition:group}}
|
\item{$(F\backslash\{0_E\}, \star)$ est un groupe \ref{definition:group}}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
\langsubsubsection{Corps commutatif}{Commutative field} \label{definition:commutative_field}
|
\langsubsubsection{Corps commutatif}{Commutative field}
|
||||||
|
|
||||||
Un corps commutatif est un corps \ref{definition:field} dont la loi de composition $(\cartesianProduct)$ est commutative \ref{definition:commutativity}.
|
\begin{definition_sq} \label{definition:commutative_field}
|
||||||
\langsubsection{Anneau}{Ring} \label{definition:ring}
|
Un corps commutatif est un corps \ref{definition:field} dont la seconde loi de composition $(\cartesianProduct)$ est commutative \ref{definition:commutativity}.
|
||||||
%TODO Complete subsection
|
\end{definition_sq}
|
||||||
|
\langsubsection{Anneau}{Ring}
|
||||||
|
|
||||||
|
Source : \citeannexes{wikipedia_ring}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:ring}
|
||||||
|
Un anneau $(R, +, \star)$ est un triplet, un ensemble $R$, une opération $(+)$ qui est un groupe abélien \ref{definition:abelian_group}, une opération $(\star)$ qui est un monoïde \ref{definition:monoid} et l'opération $(\star)$ est distributive sur l'opération $(+)$, c'est-à-dire
|
||||||
|
|
||||||
|
$\forall (a, b, c) \in R^3$
|
||||||
|
\begin{itemize}
|
||||||
|
\item{Distributivité à gauche : $a \star (b + c) = (a \star b) + (a \star c)$}
|
||||||
|
\item{Distributivité à droite : $(b + c) \star a = (b \star a) + (c \star a)$}
|
||||||
|
\end{itemize}
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
\section{Matrices}
|
\section{Matrices}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
@ -286,7 +355,7 @@ $$\forall v \in E, \exists \lambda \in \K^n, \sum\limits_{i=1}^n \lambda_i e_i =
|
|||||||
\langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
|
\langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
Soit $E$ un $\K$-espace vectoriel \ref{definition:vector_space}, $F$ est un sous-espace vectoriel (i.e. « s.e.v ») si $F \subset E$ ainsi que les propriétés suivantes :
|
Soit $E$ un $\K$-espace vectoriel \ref{definition:vector_space}, $F$ est un sous-espace vectoriel (parfois notée « s.e.v ») si $F \subset E$ ainsi que les propriétés suivantes :
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{$F \ne \emptyset$}
|
\item{$F \ne \emptyset$}
|
||||||
|
@ -16,6 +16,23 @@ A category $\Cat$ is a collection of objects and morphisms
|
|||||||
A morphism $f$ on a category $\Cat$ is a transformation between a domain and a codomain.
|
A morphism $f$ on a category $\Cat$ is a transformation between a domain and a codomain.
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
|
\langsubsection{Homomorphisme}{Homomorphism}
|
||||||
|
|
||||||
|
Source : \citeannexes{wikipedia_homomorphism}
|
||||||
|
|
||||||
|
\begin{definition_sq} \label{definition:homomorphism}
|
||||||
|
A homomorphism is a morphism between two categories that keeps algebraic structures. Let $(X, \star)$ and $(Y, \composes)$ two algebraic structures and let $\function{\phi}{X}{Y}$.
|
||||||
|
|
||||||
|
$$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$
|
||||||
|
|
||||||
|
Similarly, such that the following diagram commutes :
|
||||||
|
|
||||||
|
\[\begin{tikzcd}
|
||||||
|
X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\
|
||||||
|
X \arrow[r, "\phi"] & Y
|
||||||
|
\end{tikzcd}\]
|
||||||
|
\end{definition_sq}
|
||||||
|
|
||||||
\langsubsection{Section et rétraction}{Section and retraction}
|
\langsubsection{Section et rétraction}{Section and retraction}
|
||||||
|
|
||||||
let $\function{f}{X}{Y}$ and $\function{g}{Y}{X}$ such that $f \composes g = \identity_Y$
|
let $\function{f}{X}{Y}$ and $\function{g}{Y}{X}$ such that $f \composes g = \identity_Y$
|
||||||
@ -35,18 +52,29 @@ Right inverse of a morphism, is the dual of a retraction. A section that is also
|
|||||||
|
|
||||||
Left inverse of a morphism, is the dual of a section. A retraction that is also a monomorphism is an isomorphism
|
Left inverse of a morphism, is the dual of a section. A retraction that is also a monomorphism is an isomorphism
|
||||||
|
|
||||||
|
\langsubsection{Monomorphisme}{Monomorphism} \label{definition:monomorphism}
|
||||||
|
|
||||||
|
Source : \citeannexes{wikipedia_monomorphism}
|
||||||
|
|
||||||
|
A monomorphism is a homomorphism that is injective \ref{definition:injective}, similarly, a morphism that is left-cancellable i.e.
|
||||||
|
|
||||||
|
Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $f \composes g_1 = f \composes g_2 \implies g_1 = g_2$.
|
||||||
|
|
||||||
|
\[\begin{tikzcd}
|
||||||
|
Z \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & X \arrow[r, "f"] & Y
|
||||||
|
\end{tikzcd}\]
|
||||||
|
|
||||||
\langsubsection{Epimorphisme}{Epimorphism} \label{definition:epimorphism}
|
\langsubsection{Epimorphisme}{Epimorphism} \label{definition:epimorphism}
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
Source : \citeannexes{wikipedia_epimorphism}
|
Source : \citeannexes{wikipedia_epimorphism}
|
||||||
|
|
||||||
Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$
|
An epimorphism is a homomorphism that is surjective \ref{definition:surjective}, similarly, a morphism that is right-cancellable i.e.
|
||||||
|
|
||||||
An epimorphism is a morphism that is right-cancellable i.e. $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$
|
Let $\function{f}{X}{Y}$ and $\function{g_1,g_2}{Y}{Z}$, $g_1 \composes f = g_2 \composes f \implies g_1 = g_2$.
|
||||||
|
|
||||||
\begin{tikzcd}
|
\[\begin{tikzcd}
|
||||||
X \arrow[r, "f"] & Y \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & Z
|
X \arrow[r, "f"] & Y \arrow[r, "g_1", shift left=1ex] \arrow[r, "g_2", shift right=1ex] & Z
|
||||||
\end{tikzcd}
|
\end{tikzcd}\]
|
||||||
|
|
||||||
\langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism}
|
\langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
@ -67,24 +95,6 @@ Isomorphism is a bijective \ref{definition:bijection} morphism.
|
|||||||
|
|
||||||
An automorphism is a morphism that is both an isomorphism \ref{definition:isomorphism} and an endomorphism \ref{definition:endomorphism}.
|
An automorphism is a morphism that is both an isomorphism \ref{definition:isomorphism} and an endomorphism \ref{definition:endomorphism}.
|
||||||
|
|
||||||
\langsubsection{Homomorphisme}{Homomorphism}
|
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:homomorphism}
|
|
||||||
A homomorphism is a morphism between two categories that keeps algebraic structures. Let $(X, \star)$ and $(Y, \composes)$ two algebraic structures and let $\function{\phi}{X}{Y}$.
|
|
||||||
|
|
||||||
$$\forall (x, y) \in X^2, \phi(x \star y) = \phi(x) \composes \phi(y)$$
|
|
||||||
|
|
||||||
Similarly, such that the following diagram commutes :
|
|
||||||
|
|
||||||
\begin{tikzcd}
|
|
||||||
X \cartesianProduct X \arrow[r, "\phi \cartesianProduct \phi"] \arrow[d, "\star"] & Y \cartesianProduct Y \arrow[d, "\composes"] \\
|
|
||||||
X \arrow[r, "\phi"] & Y
|
|
||||||
\end{tikzcd}
|
|
||||||
\end{definition_sq}
|
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_homomorphism}
|
|
||||||
|
|
||||||
\langsubsection{Homeomorphisme}{Homeomorphism}
|
\langsubsection{Homeomorphisme}{Homeomorphism}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
|
@ -35,7 +35,7 @@
|
|||||||
\DeclareMathOperator{\Rel}{\mathcal{R}} % New symbol for binary relations
|
\DeclareMathOperator{\Rel}{\mathcal{R}} % New symbol for binary relations
|
||||||
\DeclareMathOperator{\composes}{\circ} % New symbol composing morphisms
|
\DeclareMathOperator{\composes}{\circ} % New symbol composing morphisms
|
||||||
\DeclarePairedDelimiter{\abs}{|}{|}
|
\DeclarePairedDelimiter{\abs}{|}{|}
|
||||||
\newcommand{\isomorphic}{\cong} % Isomorphism
|
\newcommand{\isomorphic}{\simeq} % Isomorphism
|
||||||
\DeclarePairedDelimiter{\card}{|}{|}
|
\DeclarePairedDelimiter{\card}{|}{|}
|
||||||
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
||||||
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
|
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
|
||||||
@ -54,9 +54,10 @@
|
|||||||
\newenvironment{corollary_sq}{\begin{mdframed}\begin{corollary}}{\end{corollary}\end{mdframed}}
|
\newenvironment{corollary_sq}{\begin{mdframed}\begin{corollary}}{\end{corollary}\end{mdframed}}
|
||||||
\newcommand{\norm}[1]{\lVert#1\rVert}
|
\newcommand{\norm}[1]{\lVert#1\rVert}
|
||||||
\newcommand{\Norm}[1]{\lVert #1\rVert}
|
\newcommand{\Norm}[1]{\lVert #1\rVert}
|
||||||
|
\newcommand{\matrixnorm}[1]{\lVert#1\rVert}
|
||||||
\newcommand{\powerset}[1]{\mathcal{P}(#1)} % Power set
|
\newcommand{\powerset}[1]{\mathcal{P}(#1)} % Power set
|
||||||
\newcommand{\converges}{\rightarrow}
|
\newcommand{\converges}{\rightarrow}
|
||||||
\newcommand{\equivalence}{\Leftrightarrow}
|
\newcommand{\equivalence}{\Longleftrightarrow}
|
||||||
\renewcommand{\implies}{\Longrightarrow}
|
\renewcommand{\implies}{\Longrightarrow}
|
||||||
\newcommand{\Limplies}{\Longleftarrow}
|
\newcommand{\Limplies}{\Longleftarrow}
|
||||||
\newcommand{\impliespart}{\fbox{$\implies$}}
|
\newcommand{\impliespart}{\fbox{$\implies$}}
|
||||||
|
@ -349,6 +349,10 @@
|
|||||||
title = {Epimorphism},
|
title = {Epimorphism},
|
||||||
url = {https://en.wikipedia.org/wiki/Epimorphism}
|
url = {https://en.wikipedia.org/wiki/Epimorphism}
|
||||||
}
|
}
|
||||||
|
@online{wikipedia_monomorphism,
|
||||||
|
title = {Monomorphism},
|
||||||
|
url = {https://en.wikipedia.org/wiki/Monomorphism}
|
||||||
|
}
|
||||||
@online{wikipedia_section_category_theory,
|
@online{wikipedia_section_category_theory,
|
||||||
title = {Section (category theory)},
|
title = {Section (category theory)},
|
||||||
url = {https://en.wikipedia.org/wiki/Section\_(category_theory)}
|
url = {https://en.wikipedia.org/wiki/Section\_(category_theory)}
|
||||||
@ -381,3 +385,7 @@
|
|||||||
title = {Topological transitivity - Scholarpedia},
|
title = {Topological transitivity - Scholarpedia},
|
||||||
url = {http://www.scholarpedia.org/article/Topological\_transitivity}
|
url = {http://www.scholarpedia.org/article/Topological\_transitivity}
|
||||||
}
|
}
|
||||||
|
@online{wikipedia_ring,
|
||||||
|
title = {Ring (mathematics)},
|
||||||
|
url = {https://en.wikipedia.org/wiki/Ring\_(mathematics)}
|
||||||
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user