Compare commits
No commits in common. "7bc99a71f41425feff40900d9c186ea678fea4f3" and "c1a6223f549d7639b00e7d44017fb64322c22810" have entirely different histories.
7bc99a71f4
...
c1a6223f54
9
Makefile
9
Makefile
@ -1,11 +1,9 @@
|
|||||||
OUT_DIR := out
|
OUT_DIR := out
|
||||||
GRAPHS_DIR := graphs
|
GRAPHS_DIR := graphs
|
||||||
CONTENTS_DIR := contents
|
CONTENTS_DIR := contents
|
||||||
PACKAGES_DIR := packages
|
|
||||||
REFERENCES_DIR := references
|
REFERENCES_DIR := references
|
||||||
|
|
||||||
CONTENTS := $(wildcard $(CONTENTS_DIR)/*.tex)
|
CONTENTS := $(wildcard $(CONTENTS)/*.tex)
|
||||||
PACKAGES := $(wildcard $(PACKAGES_DIR)/*.sty)
|
|
||||||
REFERENCES := $(wildcard $(REFERENCES_DIR)/*.bib)
|
REFERENCES := $(wildcard $(REFERENCES_DIR)/*.bib)
|
||||||
GRAPHS := $(wildcard $(GRAPHS_DIR)/*.gv)
|
GRAPHS := $(wildcard $(GRAPHS_DIR)/*.gv)
|
||||||
GRAPHS_IMG := $(GRAPHS:$(GRAPHS_DIR)/%.gv=$(OUT_DIR)/%.gv.png)
|
GRAPHS_IMG := $(GRAPHS:$(GRAPHS_DIR)/%.gv=$(OUT_DIR)/%.gv.png)
|
||||||
@ -31,12 +29,11 @@ references: $(REFERENCES)
|
|||||||
bibtex $(OUT_DIR)/annexes
|
bibtex $(OUT_DIR)/annexes
|
||||||
bibtex $(OUT_DIR)/references
|
bibtex $(OUT_DIR)/references
|
||||||
|
|
||||||
.PHONY: --inner_pdf
|
--inner_pdf:
|
||||||
--inner_pdf: $(CONTENTS) $(PACKAGES) $(REFERENCES) $(GRAPHS)
|
|
||||||
pdflatex -output-directory $(OUT_DIR) main.tex
|
pdflatex -output-directory $(OUT_DIR) main.tex
|
||||||
|
|
||||||
.PHONY: pdf
|
.PHONY: pdf
|
||||||
pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf references --inner_pdf
|
pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf
|
||||||
|
|
||||||
.PHONY: preview
|
.PHONY: preview
|
||||||
preview: pdf
|
preview: pdf
|
||||||
|
@ -4,45 +4,22 @@
|
|||||||
\section{Structures}
|
\section{Structures}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
\subsection{Magma} \label{definition:magma}
|
\subsection{Monoïd}
|
||||||
|
%TODO Complete subsection
|
||||||
|
|
||||||
Soit une structure $S$ avec une loi de composition interne $(+)$ notée $(S,+)$ tel que $\forall(a,b) \in S, a + b \in S$.
|
\langsubsection{Corps}{Field}
|
||||||
|
%TODO Complete subsection
|
||||||
|
|
||||||
\langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma}
|
\langsubsection{Anneau}{Ring}
|
||||||
|
|
||||||
Soit un magma \ref{definition:magma} $(S,+)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e + a = a$.
|
|
||||||
|
|
||||||
\subsection{Monoïd} \label{definition:monoid}
|
|
||||||
|
|
||||||
Soit un magma unital \ref{definition:unital_magma} $(S,+)$ dont la loi de composition est associative \ref{definition:associativity}.
|
|
||||||
|
|
||||||
\langsubsection{Groupe}{Group} \label{definition:group}
|
|
||||||
|
|
||||||
Soit un monoid \ref{definition:monoid} $(G,+)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = 0_e$.
|
|
||||||
|
|
||||||
\langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group}
|
|
||||||
|
|
||||||
Un groupe abélien est un groupe \ref{definition:group} dont la loi de composition est commutatif \ref{definition:commutativity}.
|
|
||||||
|
|
||||||
\langsubsection{Corps}{Field} \label{definition:field}
|
|
||||||
|
|
||||||
Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\times)$ notée $(F,+,\times)$.
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$}
|
|
||||||
\item{$(F\backslash\{0_e\},\times)$ est un groupe \ref{definition:group}}
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\langsubsection{Anneau}{Ring} \label{definition:ring}
|
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
\section{Matrices}
|
\section{Matrices}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps \ref{definition:field} $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$.
|
Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$.
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:square_matrix}
|
\begin{definition_sq} \label{definition:square_matrix}
|
||||||
Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n + m$.
|
Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$ où $n = m$.
|
||||||
\end{definition_sq}
|
\end{definition_sq}
|
||||||
|
|
||||||
\begin{definition_sq} \label{definition:identity_matrix}
|
\begin{definition_sq} \label{definition:identity_matrix}
|
||||||
@ -52,7 +29,7 @@ Un matrice est une structure qui permet de regrouper plusieurs éléments d'un c
|
|||||||
\subsection{Trace}
|
\subsection{Trace}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=0}^na_{kk}$
|
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=1}^na_{kk}$
|
||||||
|
|
||||||
$tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$
|
$tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$
|
||||||
|
|
||||||
@ -81,9 +58,12 @@ $\function{D}{\mathcal{M}_{m\times n}(\R)}{R}$
|
|||||||
\langsubsubsection{Axiomes}{Axioms}
|
\langsubsubsection{Axiomes}{Axioms}
|
||||||
%%TODO Complete subsubsection
|
%%TODO Complete subsubsection
|
||||||
|
|
||||||
|
|
||||||
$\forall M \in \mathcal{M}_{m\times n}$
|
$\forall M \in \mathcal{M}_{m\times n}$
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$}
|
\item{$M' = \begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \end{pmatrix}M$}
|
||||||
|
\item{$\forall \lambda \in K, D(\lambda M) = \lambda D(M)$}
|
||||||
|
\item{}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\langsubsubsection{Cas 2x2}{2x2 case}
|
\langsubsubsection{Cas 2x2}{2x2 case}
|
||||||
@ -168,70 +148,38 @@ $A \in \mathcal{T}^+_{n,n}$
|
|||||||
|
|
||||||
$A = \begin{bmatrix}x_1, \cdots, x_n\end{bmatrix}$
|
$A = \begin{bmatrix}x_1, \cdots, x_n\end{bmatrix}$
|
||||||
|
|
||||||
\langsection{Espaces vectoriels}{Vectors spaces} \label{definition:vector_space}
|
\langsection{Espaces vectoriels}{Vectors spaces}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
Soit $(E,+)$ un groupe abélien \ref{definition:abelian_group} de $\K$
|
Soit $(E,+)$ un groupe abélien (i.e. commutatif) de $\mathbb{K}$
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{muni d'une loi de composition externe d'un corps $\K$ tel que $\K*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$}
|
\item{muni d'une loi de composition interne notée $+$}
|
||||||
|
\item{muni d'une loi de composition externe $\mathbb{K}*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\bigskip
|
\bigskip
|
||||||
Et vérifiant $\forall(\alpha,\beta) \in \K, \forall(a,b,c) \in E$
|
Et vérifiant $\forall(\alpha,\beta) \in \mathbb{K}, \forall(a,b,c) \in E$
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{Unital en $*$}
|
\item{Commutativité $a + b = b + a$}
|
||||||
\item{Distributivité (gauche et droite) $+$ de $\K \Leftrightarrow a(\alpha+\beta)+(\alpha+\beta)a+\alpha a + \beta a$}
|
\item{Associativité $(a + b) + c = a + (b + c)$}
|
||||||
\item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$}
|
\item{Élement neutre de $+ \Leftrightarrow \exists 0_E \in E : a + 0_E = a$}
|
||||||
|
\item{Élement neutre de $* \Leftrightarrow \exists 1_K \in K : a \cdot 1_K = a$}
|
||||||
|
\item{Élement opposé $\forall a \in E, \exists b \in E : a + b = b + a = 0_E$}
|
||||||
|
\item{Stabilité par $+ \Leftrightarrow a + b \in E$}
|
||||||
|
\item{Distributivité $+$ de $\mathbb{K} \Leftrightarrow (\alpha+\beta)a=\alpha a + \beta a$}
|
||||||
|
\item{Distributivité $*$ de $\mathbb{K} \Leftrightarrow (\alpha*\beta)a=\alpha(\beta a)$}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
|
\langsubsection{sous-espaces vectoriels}{Sub vector spaces}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
Soit $E$ un $\K$-espace vectoriel \ref{definition:vector_space}, $F$ est une sous-espace vectoriel (i.e. « s.e.v ») si $F \subset E$ ainsi que les propriétés suivantes :
|
Soit $E$ un $\mathbb{K}$-espace vectoriel et $F \subset E$
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item{$F \ne \emptyset$}
|
\item{$F \ne \emptyset$}
|
||||||
\item{$0_E \in F$}
|
\item{$0_E \in F$}
|
||||||
\item{$\forall(\alpha, \beta) \in \K, \forall(x,y)\in F, \alpha x + \beta y \in F$}
|
\item{$\forall(\alpha,\beta)\in\mathbb{K}, \forall(x,y)\in F, \alpha x+\beta y\in F$}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\begin{theorem_sq} \label{theorem:union_sub_vector_spaces}
|
|
||||||
Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$. « $F \union G$ est un s.e.v de $E$ » $ \equivalance (F \subset G) \lor (G \subset F)$.
|
|
||||||
\end{theorem_sq}
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
|
|
||||||
Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$.
|
|
||||||
|
|
||||||
\begin{centering}
|
|
||||||
$\implies$
|
|
||||||
\end{centering}
|
|
||||||
|
|
||||||
$(F \subset G) \lor (G \subset F) \implies (G $ s.e.v de $E) \lor (F $ s.e.v de $E) \implies (F \union G)$ s.e.v de $E$.
|
|
||||||
|
|
||||||
\begin{centering}
|
|
||||||
$\Leftarrow$
|
|
||||||
\end{centering}
|
|
||||||
|
|
||||||
$(F \union G) $ s.e.v de $E \land [(F \not\subset G) \land (G \not\subset F)]$
|
|
||||||
|
|
||||||
Let $x \in F \setminus G$ and $y \in G \setminus F$
|
|
||||||
|
|
||||||
$(F\union G)$ s.e.v de $E \implies x + y \in F \union G$
|
|
||||||
|
|
||||||
B.W.O.C let's suppose $x + y \in F \setminus G$
|
|
||||||
|
|
||||||
$\implies (x + y) - x \in F \setminus G$
|
|
||||||
|
|
||||||
$\implies y \in F \setminus G \land y \in G \setminus F \implies \bot$
|
|
||||||
|
|
||||||
By a similar argument $y \notin G \setminus F$
|
|
||||||
|
|
||||||
$\implies (y \notin F \setminus G) \land (y \notin G \setminus F) \implies \bot$
|
|
||||||
|
|
||||||
$\implies F \subset G \lor G \subset F$
|
|
||||||
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
|
@ -1,27 +1,9 @@
|
|||||||
\langchapter{Théorie des Catégories}{Category theory}
|
\langchapter{Théorie des Catégories}{Category theory}
|
||||||
%TODO Complete chapter
|
%TODO Complete chapter
|
||||||
|
|
||||||
Category is a general theory of mathematical structures and their relations.
|
|
||||||
|
|
||||||
\langsection{Définition}{Definition}
|
|
||||||
|
|
||||||
A category $C$ is a collection of objects and morphisms
|
|
||||||
|
|
||||||
\langsection{Morphismes}{Morphisms}
|
\langsection{Morphismes}{Morphisms}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
\langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism}
|
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
\langsubsection{Endomorphisme}{Endomorphism} \label{definition:endomorphism}
|
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
\langsubsection{Homomorphisme}{Homomorphism}
|
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
\langsubsection{Homeomorphisme}{Homeomorphism}
|
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
\section{Functors}
|
\section{Functors}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
|
@ -1,14 +0,0 @@
|
|||||||
\langchapter{Définitions}{Definitions}
|
|
||||||
%TODO Complete chapter
|
|
||||||
|
|
||||||
\langsection{Psychologie}{Psychology}
|
|
||||||
%TODO Complete section
|
|
||||||
|
|
||||||
\langsubsubsection{Eleutheromanie}{Eleuteromania}
|
|
||||||
|
|
||||||
Eleutheromania, or eleutherophilia is "a mania or frantic zeal for freedom" \citereferences{carlyle_2005_french_revolution}.
|
|
||||||
The term is sometimes used in a psychological context, sometimes likening it to a mental disorder, such as John G Robertson's definition, that describes it as a mad zeal or irresistible craving for freedom \citereferences{robertson_2003_excess}.
|
|
||||||
However, it's also sometimes used to simply mean a passion for liberty \citereferences{tucker_1970_liberty}.
|
|
||||||
Individuals with this condition are called eleutheromaniacs \citereferences{wheeler_1910_literature}.
|
|
||||||
An antonym for the term is eleutherophobia. An individual that fears freedom is an eleutherophobe \citereferences{robertson_2003_excess}.
|
|
||||||
|
|
@ -126,7 +126,7 @@ $\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}$
|
|||||||
\langsection{Informatique}{Computer science}
|
\langsection{Informatique}{Computer science}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
\subsection{LaTeX}
|
\subsection{LaTex}
|
||||||
|
|
||||||
\begin{verbatim}
|
\begin{verbatim}
|
||||||
\begin{verbatim}
|
\begin{verbatim}
|
||||||
|
@ -4,31 +4,25 @@
|
|||||||
La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).
|
La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).
|
||||||
%Logic consists of operations done on sole values : True $T$ and False $F$.
|
%Logic consists of operations done on sole values : True $T$ and False $F$.
|
||||||
|
|
||||||
\langsection{Principle de tiers exclu}{Excluding middle}
|
|
||||||
|
|
||||||
$\true \equivalance \lnot \false$
|
|
||||||
|
|
||||||
$\false \equivalance \lnot \true$
|
|
||||||
|
|
||||||
\langsection{Relation Binaires}{Binary relations}
|
\langsection{Relation Binaires}{Binary relations}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
\langsubsection{Réflexion}{Reflexivity} \label{definition:reflexivity}
|
\langsubsection{Réflexion}{Reflexivity}
|
||||||
% TODO Complete subsection
|
% TODO Complete subsection
|
||||||
|
|
||||||
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$.
|
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$.
|
||||||
|
|
||||||
\langsubsection{Transitivité}{Transitivity} \label{definition:transitivity}
|
\langsubsection{Transitivité}{Transitivity}
|
||||||
% TODO Complete subsection
|
% TODO Complete subsection
|
||||||
|
|
||||||
Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$.
|
Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$.
|
||||||
|
|
||||||
\langsubsection{Associativité}{Associativity} \label{definition:associativity}
|
\langsubsection{Associativité}{Associativity}
|
||||||
% TODO Complete subsection
|
% TODO Complete subsection
|
||||||
|
|
||||||
Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$.
|
Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$.
|
||||||
|
|
||||||
\langsubsection{Commutativité}{Commutativity} \label{definition:commutativity}
|
\langsubsection{Commutativité}{Commutativity}
|
||||||
% TODO Complete subsection
|
% TODO Complete subsection
|
||||||
|
|
||||||
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$.
|
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$.
|
||||||
|
@ -86,7 +86,7 @@ Chaque application généré de $g_c$ avec $c \in \N^*$ est injective avec $\N$,
|
|||||||
|
|
||||||
\begin{itemize} \label{theorem:totally_ordered_natural_numbers}
|
\begin{itemize} \label{theorem:totally_ordered_natural_numbers}
|
||||||
\item{L'ensemble est totalement ordonnée : $\forall n \in \N, \exists k \suchas k = n + 1 \land n < k$}
|
\item{L'ensemble est totalement ordonnée : $\forall n \in \N, \exists k \suchas k = n + 1 \land n < k$}
|
||||||
\item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{paire} \\ 2k+1 & \text{Impaire} \end{cases}$}
|
\item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{pair} \\ 2k+1 & \text{Impair} \end{cases}$}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\begin{theorem_sq}
|
\begin{theorem_sq}
|
||||||
@ -139,9 +139,9 @@ $\forall (p,q) \in \Q, \forall n \in \N^*, \frac{p}{q} \Leftrightarrow \frac{p \
|
|||||||
\langsubsection{Opérateurs}{Operators}
|
\langsubsection{Opérateurs}{Operators}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
$\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$
|
$\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$
|
||||||
|
|
||||||
$\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$
|
$\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$
|
||||||
|
|
||||||
$\forall (p,q) \in \Q, \forall k \in \Z, (\frac{p}{q})^k = \frac{p^k}{q^k}$
|
$\forall (p,q) \in \Q, \forall k \in \Z, (\frac{p}{q})^k = \frac{p^k}{q^k}$
|
||||||
|
|
||||||
@ -172,7 +172,8 @@ $\functiondef{(p,q)}{P_1^{\frac{p}{|p|} + 1}P_2^pP_3^q}$
|
|||||||
|
|
||||||
\langsubsection{Construction de Cayley–Dickson}{Cayley–Dickson's construction}
|
\langsubsection{Construction de Cayley–Dickson}{Cayley–Dickson's construction}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_cayley_dickson}
|
%\citeannexes{wikipedia_cayley_dickson}
|
||||||
|
\citeannexes{project_vae}
|
||||||
|
|
||||||
\langsubsection{Coupes de Dedekind}{Dedekind's cuts}
|
\langsubsection{Coupes de Dedekind}{Dedekind's cuts}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -180,9 +181,9 @@ Source: \citeannexes{wikipedia_cayley_dickson}
|
|||||||
\langsection{Construction des complexes $(\C)$}{Construction of complex numbers}
|
\langsection{Construction des complexes $(\C)$}{Construction of complex numbers}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_complex_number}
|
\citeannexes{wikipedia_complex_numbers}
|
||||||
|
|
||||||
$\C = (a,b) \in R, a + ib ~= \R $
|
$\C = (a,b) \in R^2, a + ib ~= \R^2 $
|
||||||
|
|
||||||
$i^2 = -1$
|
$i^2 = -1$
|
||||||
|
|
||||||
@ -203,7 +204,7 @@ $i^2 = -1$
|
|||||||
\langsubsection{Relations binaries}{Binary relations}
|
\langsubsection{Relations binaries}{Binary relations}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
$\forall ((a,b), (c,d)) \in \C, a = c \land b = d \Leftrightarrow a + ib = c + id$
|
$\forall ((a,b), (c,d)) \in \C^2, a = c \land b = d \Leftrightarrow a + ib = c + id$
|
||||||
|
|
||||||
\langsubsection{Opérateurs}{Operators}
|
\langsubsection{Opérateurs}{Operators}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -212,7 +213,7 @@ Il est impossible d'avoir une relation d'ordre dans le corps des complexes mais
|
|||||||
|
|
||||||
\subsubsection{Ordre lexicographique}
|
\subsubsection{Ordre lexicographique}
|
||||||
|
|
||||||
$\forall((a,b),(c,d)) \in \C, a + ib \Rel_L c + id := \begin{cases}
|
$\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases}
|
||||||
a < c & \implies a + ib < c + id \\
|
a < c & \implies a + ib < c + id \\
|
||||||
\otherwise & \begin{cases}
|
\otherwise & \begin{cases}
|
||||||
b < d & \implies a + ib < c + id \\
|
b < d & \implies a + ib < c + id \\
|
||||||
@ -222,7 +223,7 @@ $\forall((a,b),(c,d)) \in \C, a + ib \Rel_L c + id := \begin{cases}
|
|||||||
|
|
||||||
\section{Construction des quaternions $(\Hq)$}
|
\section{Construction des quaternions $(\Hq)$}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_quaternion}
|
\citeannexes{wikipedia_quaternion}
|
||||||
|
|
||||||
\langsubsection{Table de Cayley}{Multiplication table}
|
\langsubsection{Table de Cayley}{Multiplication table}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -244,7 +245,7 @@ Source: \citeannexes{wikipedia_quaternion}
|
|||||||
|
|
||||||
\section{Construction des octonions $(\Ot)$}
|
\section{Construction des octonions $(\Ot)$}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_octonion}
|
\citeannexes{wikipedia_octonion}
|
||||||
|
|
||||||
\langsubsection{Table de multiplication}{Multiplication table}
|
\langsubsection{Table de multiplication}{Multiplication table}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -282,7 +283,7 @@ Où $\delta_{ij}$ est le symbole de Kronecker et $\epsilon_{ijk}$ est un tenseur
|
|||||||
|
|
||||||
\section{Construction des sedenions $(\Se)$}
|
\section{Construction des sedenions $(\Se)$}
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_sedenion}
|
\citeannexes{wikipedia_sedenion}
|
||||||
|
|
||||||
\langsubsection{Table de multiplication}{Multiplication table}
|
\langsubsection{Table de multiplication}{Multiplication table}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -333,40 +334,3 @@ $\rightarrow\leftarrow$
|
|||||||
$\implies |P| = \infty$
|
$\implies |P| = \infty$
|
||||||
|
|
||||||
Il existe une infinité de nombre premiers.
|
Il existe une infinité de nombre premiers.
|
||||||
|
|
||||||
\langsubsection{Irrationnalité}{Irrationality}
|
|
||||||
|
|
||||||
\langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square}
|
|
||||||
|
|
||||||
\begin{theorem_sq} \label{theorem:sqrt_prime}
|
|
||||||
$\Pn$ is the set of all prime numbers \ref{definition:prime_number}.
|
|
||||||
$\forall p \in \Pn, \sqrt{p} \notin \Q$
|
|
||||||
\end{theorem_sq}
|
|
||||||
|
|
||||||
The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime}.
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
|
|
||||||
By contradiction let's assume $\sqrt{p} \in \Q$
|
|
||||||
|
|
||||||
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
|
|
||||||
|
|
||||||
$\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
|
|
||||||
|
|
||||||
$\Rightarrow b^2p = a^2$
|
|
||||||
|
|
||||||
$\Rightarrow p|a$
|
|
||||||
|
|
||||||
Let $c \in \N^*$, $a = pc$
|
|
||||||
|
|
||||||
$\Rightarrow b^2 p = (pc)^2=p^2c^2$
|
|
||||||
|
|
||||||
$\Rightarrow b^2 = pc^2$
|
|
||||||
|
|
||||||
$\Rightarrow p|b$
|
|
||||||
|
|
||||||
$\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$
|
|
||||||
|
|
||||||
$\Rightarrow \sqrt{p} \notin \Q$
|
|
||||||
|
|
||||||
\end{proof}
|
|
||||||
|
@ -36,14 +36,3 @@ Stuffs
|
|||||||
The Nation that makes a great distinction between its scholars and its warriors will have its thinking done by cowards and its fighting done by fools.
|
The Nation that makes a great distinction between its scholars and its warriors will have its thinking done by cowards and its fighting done by fools.
|
||||||
\end{quote}
|
\end{quote}
|
||||||
(Higher education and the military)
|
(Higher education and the military)
|
||||||
|
|
||||||
\subsection{Albert Camus}
|
|
||||||
\begin{quote}
|
|
||||||
... ce, qu'on appelle une raison de vivre est en même temps une excellente raison de mourir.
|
|
||||||
\end{quote}
|
|
||||||
Le Mythe de Sysyphe: Chapitre 1
|
|
||||||
|
|
||||||
\subsection{Père de Raz}
|
|
||||||
\begin{quote}
|
|
||||||
Corps qui ni pète, ni rote est voué à l'éclatement.
|
|
||||||
\end{quote}
|
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
\langchapter{Théorie des ensembles}{Set theory} \label{set_theory}
|
\langchapter{Théorie des ensembles}{Set theory} \label{set_theory}
|
||||||
%TODO Complete chapter
|
%TODO Complete chapter
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_set_theory}
|
|
||||||
|
|
||||||
Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance.
|
Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance.
|
||||||
%A set is a mathematical construct to assemble multiple objects in a single instance.
|
%A set is a mathematical construct to assemble multiple objects in a single instance.
|
||||||
|
|
||||||
@ -18,10 +16,6 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B
|
|||||||
\langsubsection{Spécification}{Specification}
|
\langsubsection{Spécification}{Specification}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
\langsubsection{Ensemble vide}{Empty set}
|
|
||||||
|
|
||||||
Il existe un ensemble vide notée $\emptyset$.
|
|
||||||
|
|
||||||
\langsubsection{Paire}{Pairing}
|
\langsubsection{Paire}{Pairing}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
@ -30,13 +24,13 @@ Il existe un ensemble vide notée $\emptyset$.
|
|||||||
|
|
||||||
Unite all elements of two given sets into one.
|
Unite all elements of two given sets into one.
|
||||||
|
|
||||||
$n,m \in \N$
|
$n,m \in \N^+$
|
||||||
|
|
||||||
$A = \{a_0, \cdots, a_n\}$
|
$A = \{a_1, \cdots, a_n\}$
|
||||||
|
|
||||||
$B = \{b_0, \cdots, b_m\}$
|
$B = \{b_1, \cdots, b_m\}$
|
||||||
|
|
||||||
$A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
$A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$
|
||||||
|
|
||||||
\langsubsection{Scheme of replacement}{Scheme of replacement}
|
\langsubsection{Scheme of replacement}{Scheme of replacement}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
@ -47,56 +41,38 @@ $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
|
|||||||
\subsection{Power set}
|
\subsection{Power set}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
For a set $S$ such that $|S| = n \Leftrightarrow \mathbf{P}(S) = 2^n$
|
|
||||||
|
|
||||||
\langsubsection{Choix}{Choice}
|
\langsubsection{Choix}{Choice}
|
||||||
%TODO Complete subsection
|
%TODO Complete subsection
|
||||||
|
|
||||||
\section{Intersection}
|
\section{Intersection}
|
||||||
|
%TODO Complete subsection
|
||||||
Unite all common elements of two given sets into one.
|
|
||||||
|
|
||||||
$n,m,i \in \N$
|
|
||||||
|
|
||||||
$A = \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$
|
|
||||||
|
|
||||||
$B = \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$
|
|
||||||
|
|
||||||
$A \cap B = \{c_0, \cdots, c_n\}$
|
|
||||||
|
|
||||||
\langsection{Différence des sets}{Set difference}
|
\langsection{Différence des sets}{Set difference}
|
||||||
%TODO Complete section
|
%TODO Complete section
|
||||||
|
|
||||||
\langsection{Fonction}{Function}
|
\langsection{Fonction}{Function}
|
||||||
|
%TODO Complete section
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_function_mathematics}
|
Une fonction $f$ est un opération qui permet de transformer un ou plusieurs éléments d'un set $A$ en d'autres éléments d'un set $B$.
|
||||||
|
|
||||||
Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$.
|
|
||||||
|
|
||||||
If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied on set theory \ref{set_theory}.
|
|
||||||
|
|
||||||
\subsection{Notation}
|
\subsection{Notation}
|
||||||
|
%TODO Complete subsection
|
||||||
|
|
||||||
$A \longrightarrow B$
|
$A \longrightarrow B$
|
||||||
|
|
||||||
$ x \longrightarrow f(x)$
|
$ x \longrightarrow f(x)$
|
||||||
|
|
||||||
\langsubsection{Injectivité}{Injectivity} \label{definition:injective}
|
\langsubsection{Injectivité}{Injectivity}
|
||||||
|
%TODO Complete subsection
|
||||||
Source: \citeannexes{wikipedia_injective_function}
|
|
||||||
|
|
||||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
|
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
|
||||||
|
|
||||||
\langsubsection{Surjectivité}{Surjectivity} \label{definition:surjective}
|
\langsubsection{Surjectivité}{Surjectivity}
|
||||||
|
%TODO Complete subsection
|
||||||
Source: \citeannexes{wikipedia_surjective_function}
|
|
||||||
|
|
||||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$.
|
Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$.
|
||||||
|
|
||||||
\langsubsection{Bijectivité}{Bijectivity}
|
\langsubsection{Bijectivité}{Bijectivity}
|
||||||
|
%TODO Complete subsection
|
||||||
|
|
||||||
Source: \citeannexes{wikipedia_bijection} \label{definition:bijection}
|
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective et surjective ou $\forall y \in F, \exists! x \in E : y = f(x)$.
|
||||||
|
|
||||||
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$.
|
|
||||||
|
|
||||||
Every bijection is an isomorphism \ref{definition:isomorphism} applied on set theory \ref{set_theory}.
|
|
||||||
|
@ -130,7 +130,7 @@ Toute sous-suites (ou suites extraite) d'un suite convergente vers $l \in E$ con
|
|||||||
Montrer que l’ensemble $\{x_n, n \in \N\}$ est borné.
|
Montrer que l’ensemble $\{x_n, n \in \N\}$ est borné.
|
||||||
\\
|
\\
|
||||||
|
|
||||||
Sachant que $(x_n) \in E$ converge vers $l \in E \land \epsilon > 0$.
|
Sachant que $(x_n) \ in E$ converge vers $l \in E$ \&\& $\epsilon > 0$.
|
||||||
|
|
||||||
$\Leftrightarrow \exists y \in E$ tel que $\{\forall n \in \N, x_n, l\} \subset \bar{\mathbb{B}}(y, \epsilon) \subset E$.
|
$\Leftrightarrow \exists y \in E$ tel que $\{\forall n \in \N, x_n, l\} \subset \bar{\mathbb{B}}(y, \epsilon) \subset E$.
|
||||||
|
|
||||||
|
1
main.tex
1
main.tex
@ -77,7 +77,6 @@ De de manière honteusement démagogique, je vous remercie tout lecteurs de ce n
|
|||||||
\input{contents/music_theory}
|
\input{contents/music_theory}
|
||||||
\input{contents/philosophy}
|
\input{contents/philosophy}
|
||||||
\input{contents/linguistic}
|
\input{contents/linguistic}
|
||||||
\input{contents/definitions}
|
|
||||||
|
|
||||||
\addcontentsline{toc}{chapter}{Références}
|
\addcontentsline{toc}{chapter}{Références}
|
||||||
\begingroup
|
\begingroup
|
||||||
|
@ -1,7 +1,4 @@
|
|||||||
\ProvidesPackage{packages/language_selector}
|
\ProvidesPackage{language_selector}
|
||||||
|
|
||||||
\newcommand{\subsubsubsection}[1]{\paragraph{#1}\smallskip}
|
|
||||||
\newcommand{\subsubsubsubsection}[1]{\subparagraph{#1}\smallskip}
|
|
||||||
|
|
||||||
\DeclareOption{french}{
|
\DeclareOption{french}{
|
||||||
\def\langoption{french}
|
\def\langoption{french}
|
||||||
@ -12,7 +9,6 @@
|
|||||||
\newcommand{\langsubsection}[2]{\subsection{#1}}
|
\newcommand{\langsubsection}[2]{\subsection{#1}}
|
||||||
\newcommand{\langsubsubsection}[2]{\subsubsection{#1}}
|
\newcommand{\langsubsubsection}[2]{\subsubsection{#1}}
|
||||||
\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#1}}
|
\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#1}}
|
||||||
\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#1}}
|
|
||||||
\newcommand{\langnewcites}[3]{\newcites{#1}{#2}}
|
\newcommand{\langnewcites}[3]{\newcites{#1}{#2}}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -25,7 +21,6 @@
|
|||||||
\newcommand{\langsubsection}[2]{\subsection{#2}}
|
\newcommand{\langsubsection}[2]{\subsection{#2}}
|
||||||
\newcommand{\langsubsubsection}[2]{\subsubsection{#2}}
|
\newcommand{\langsubsubsection}[2]{\subsubsection{#2}}
|
||||||
\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#2}}
|
\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#2}}
|
||||||
\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#2}}
|
|
||||||
\newcommand{\langnewcites}[3]{\newcites{#1}{#3}}
|
\newcommand{\langnewcites}[3]{\newcites{#1}{#3}}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,9 +1,7 @@
|
|||||||
\ProvidesPackage{packages/macros}
|
\ProvidesPackage{macros}
|
||||||
|
|
||||||
\RequirePackage{amsfonts} % Include missing symbols s.a "Natural Numbers"
|
\RequirePackage{amsfonts} % Include missing symbols s.a "Natural Numbers"
|
||||||
|
|
||||||
\usepackage{amsthm} % for 'proof' environment
|
|
||||||
|
|
||||||
% Snippet to add dots to TOC
|
% Snippet to add dots to TOC
|
||||||
% Thanks to "user11232" at https://tex.stackexchange.com/questions/53898/how-to-get-lines-with-dots-in-the-table-of-contents-for-sections
|
% Thanks to "user11232" at https://tex.stackexchange.com/questions/53898/how-to-get-lines-with-dots-in-the-table-of-contents-for-sections
|
||||||
%\usepackage{tocloft}
|
%\usepackage{tocloft}
|
||||||
@ -44,7 +42,6 @@
|
|||||||
\newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2}
|
\newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2}
|
||||||
\newcommand{\otherwise}{\text{Sinon}}
|
\newcommand{\otherwise}{\text{Sinon}}
|
||||||
%\newcommand{\otherwise}{\text{Otherwise}}
|
%\newcommand{\otherwise}{\text{Otherwise}}
|
||||||
\DeclareMathOperator{\union}{\cup}
|
|
||||||
|
|
||||||
\renewcommand{\smallskip}{\vspace{3pt}}
|
\renewcommand{\smallskip}{\vspace{3pt}}
|
||||||
\renewcommand{\medskip}{\vspace{6pt}}
|
\renewcommand{\medskip}{\vspace{6pt}}
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
\ProvidesPackage{packages/themes}
|
\ProvidesPackage{themes}
|
||||||
|
|
||||||
% Add many functions for colour themes
|
% Add many functions for colour themes
|
||||||
\RequirePackage{xcolor}
|
\RequirePackage{xcolor}
|
||||||
|
@ -287,7 +287,7 @@
|
|||||||
}
|
}
|
||||||
@online{wikipedia_complex_number,
|
@online{wikipedia_complex_number,
|
||||||
title = {Complex number},
|
title = {Complex number},
|
||||||
url = {https://en.wikipedia.org/wiki/Complex\_number}
|
url = {https://en.wikipedia.org/wiki/Complex_number}
|
||||||
}
|
}
|
||||||
@online{wikipedia_quaternion,
|
@online{wikipedia_quaternion,
|
||||||
title = {Quaternion},
|
title = {Quaternion},
|
||||||
@ -301,35 +301,3 @@
|
|||||||
title = {Sedenion},
|
title = {Sedenion},
|
||||||
url = {https://en.wikipedia.org/wiki/Sedenion}
|
url = {https://en.wikipedia.org/wiki/Sedenion}
|
||||||
}
|
}
|
||||||
@online{wikipedia_function_mathematics,
|
|
||||||
title = {Function (mathematics)},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Function\_(mathematics)}
|
|
||||||
}
|
|
||||||
@online{wikipedia_domain_function,
|
|
||||||
title = {Domain of a function},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Domain\_of\_a\_function}
|
|
||||||
}
|
|
||||||
@online{wikipedia_codomain,
|
|
||||||
title = {Codomain},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Codomain}
|
|
||||||
}
|
|
||||||
@online{wikipedia_set_theory,
|
|
||||||
title = {Set theory},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Set\_theory}
|
|
||||||
}
|
|
||||||
@online{wikipedia_injective_function,
|
|
||||||
title = {Injective function},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Injective\_function}
|
|
||||||
}
|
|
||||||
@online{wikipedia_surjective_function,
|
|
||||||
title = {Surjective function},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Surjective\_function}
|
|
||||||
}
|
|
||||||
@online{wikipedia_bijection,
|
|
||||||
title = {Bijection},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Bijection}
|
|
||||||
}
|
|
||||||
@online{wikipedia_hyperbolic_functions,
|
|
||||||
title = {Hyperbolic functions},
|
|
||||||
url = {https://en.wikipedia.org/wiki/Hyperbolic\_functions}
|
|
||||||
}
|
|
||||||
|
@ -433,39 +433,3 @@ in a principled way.},
|
|||||||
biburl = {https://dblp.org/rec/journals/corr/abs-2012-00152.bib},
|
biburl = {https://dblp.org/rec/journals/corr/abs-2012-00152.bib},
|
||||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||||
}
|
}
|
||||||
@book{carlyle_2005_french_revolution,
|
|
||||||
title = {The French Revolution},
|
|
||||||
author = {Carlyle, T. and Ball, A.H.R.},
|
|
||||||
isbn = {9780486445137},
|
|
||||||
page = {242},
|
|
||||||
lccn = {2005047548},
|
|
||||||
series = {Dover Value Editions},
|
|
||||||
year = {2005},
|
|
||||||
publisher = {Dover Publications}
|
|
||||||
}
|
|
||||||
@book{robertson_2003_excess,
|
|
||||||
title = {An Excess of Phobias and Manias},
|
|
||||||
author = {John G. Robertson},
|
|
||||||
page = {75},
|
|
||||||
isbn = {9780963091932},
|
|
||||||
year = {2003},
|
|
||||||
publisher = {Senior Scribe Publications}
|
|
||||||
}
|
|
||||||
@book{tucker_1970_liberty,
|
|
||||||
title = {Liberty},
|
|
||||||
author = {Benjamin Ricketson Tucker},
|
|
||||||
page = {361},
|
|
||||||
volumes = {235,312},
|
|
||||||
year = {1970},
|
|
||||||
number = {vol.~9~{\`a}~10~;vol.~235~{\`a}~312},
|
|
||||||
lccn = {72022711},
|
|
||||||
series = {Radical periodicals in the United States},
|
|
||||||
publisher = {Greenwood Reprint Corporation}
|
|
||||||
}
|
|
||||||
@book{wheeler_1910_literature,
|
|
||||||
title = {Current Literature},
|
|
||||||
author = {Edward Jewitt Wheeler},
|
|
||||||
page = {564},
|
|
||||||
volumes = {49},
|
|
||||||
year = {1910}
|
|
||||||
}
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user