Compare commits

...

12 Commits

Author SHA1 Message Date
saundersp
7bc99a71f4 philosphy : added Camus Sysyphe citation and Raz joke 2024-08-05 00:49:31 +02:00
saundersp
4df2923c6a logic : added labels and excluding middle definition 2024-08-05 00:49:09 +02:00
saundersp
4cbadb17a4 Added union s.e.v proof and irrationality of sqrt 2024-08-05 00:48:54 +02:00
saundersp
89bbc9adf9 category_theory : added more morphisms 2024-08-05 00:36:02 +02:00
saundersp
b16f6de66d Added more sources citations 2024-08-05 00:35:49 +02:00
saundersp
1a17854c3c Fixed some notations mistakes 2024-08-05 00:35:14 +02:00
saundersp
55ac1c6c20 packages/language_selector.sty : added subsubsubsection and subsubsubsubsection commands 2024-08-05 00:33:04 +02:00
saundersp
6af3c70835 packages/macros.sty : added proof environment with «amsthm» 2024-08-05 00:32:42 +02:00
saundersp
e7f324dbe4 Fixed custom packages warning messages 2024-08-05 00:32:12 +02:00
saundersp
4688e13c93 Fixed Makefile 2024-08-05 00:31:57 +02:00
saundersp
b6e7429363 Fixed references 2024-08-05 00:31:29 +02:00
saundersp
fb7b817d5f added contents/definitions 2024-08-05 00:31:10 +02:00
16 changed files with 308 additions and 67 deletions

View File

@ -1,9 +1,11 @@
OUT_DIR := out OUT_DIR := out
GRAPHS_DIR := graphs GRAPHS_DIR := graphs
CONTENTS_DIR := contents CONTENTS_DIR := contents
PACKAGES_DIR := packages
REFERENCES_DIR := references REFERENCES_DIR := references
CONTENTS := $(wildcard $(CONTENTS)/*.tex) CONTENTS := $(wildcard $(CONTENTS_DIR)/*.tex)
PACKAGES := $(wildcard $(PACKAGES_DIR)/*.sty)
REFERENCES := $(wildcard $(REFERENCES_DIR)/*.bib) REFERENCES := $(wildcard $(REFERENCES_DIR)/*.bib)
GRAPHS := $(wildcard $(GRAPHS_DIR)/*.gv) GRAPHS := $(wildcard $(GRAPHS_DIR)/*.gv)
GRAPHS_IMG := $(GRAPHS:$(GRAPHS_DIR)/%.gv=$(OUT_DIR)/%.gv.png) GRAPHS_IMG := $(GRAPHS:$(GRAPHS_DIR)/%.gv=$(OUT_DIR)/%.gv.png)
@ -29,11 +31,12 @@ references: $(REFERENCES)
bibtex $(OUT_DIR)/annexes bibtex $(OUT_DIR)/annexes
bibtex $(OUT_DIR)/references bibtex $(OUT_DIR)/references
--inner_pdf: .PHONY: --inner_pdf
--inner_pdf: $(CONTENTS) $(PACKAGES) $(REFERENCES) $(GRAPHS)
pdflatex -output-directory $(OUT_DIR) main.tex pdflatex -output-directory $(OUT_DIR) main.tex
.PHONY: pdf .PHONY: pdf
pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf pdf: $(GRAPHS_IMG) --inner_pdf references index --inner_pdf references --inner_pdf
.PHONY: preview .PHONY: preview
preview: pdf preview: pdf

View File

@ -4,22 +4,45 @@
\section{Structures} \section{Structures}
%TODO Complete section %TODO Complete section
\subsection{Monoïd} \subsection{Magma} \label{definition:magma}
%TODO Complete subsection
\langsubsection{Corps}{Field} Soit une structure $S$ avec une loi de composition interne $(+)$ notée $(S,+)$ tel que $\forall(a,b) \in S, a + b \in S$.
%TODO Complete subsection
\langsubsection{Anneau}{Ring} \langsubsection{Magma unital}{Unital magma} \label{definition:unital_magma}
Soit un magma \ref{definition:magma} $(S,+)$ untial en $0_e$ tel que $\exists 0_e \in S, \forall a \in S, 0_e + a = a$.
\subsection{Monoïd} \label{definition:monoid}
Soit un magma unital \ref{definition:unital_magma} $(S,+)$ dont la loi de composition est associative \ref{definition:associativity}.
\langsubsection{Groupe}{Group} \label{definition:group}
Soit un monoid \ref{definition:monoid} $(G,+)$ ayant un élément inverse tel que $\forall a \in G, \exists a^{-1} \in G, a + a^{-1} = 0_e$.
\langsubsubsection{Groupe abélien}{Abelian group} \label{definition:abelian_group}
Un groupe abélien est un groupe \ref{definition:group} dont la loi de composition est commutatif \ref{definition:commutativity}.
\langsubsection{Corps}{Field} \label{definition:field}
Soit une structure $F$ avec deux lois de composition interne $(+)$ et $(\times)$ notée $(F,+,\times)$.
\begin{itemize}
\item{$(F,+)$ est un groupe \ref{definition:group} unital en $0_e$}
\item{$(F\backslash\{0_e\},\times)$ est un groupe \ref{definition:group}}
\end{itemize}
\langsubsection{Anneau}{Ring} \label{definition:ring}
%TODO Complete subsection %TODO Complete subsection
\section{Matrices} \section{Matrices}
%TODO Complete section %TODO Complete section
Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$. Un matrice est une structure qui permet de regrouper plusieurs éléments d'un corps \ref{definition:field} $\K$ en un tableau de $n$ lignes et $m$ colonnes ou plus et est notée $\mathcal{M}_{n,m}(\K)$. Dans le cas d'une matrice carrée , on peux simplifier la notation en $\mathcal{M}_{n}(\K)$.
\begin{definition_sq} \label{definition:square_matrix} \begin{definition_sq} \label{definition:square_matrix}
Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$$n = m$. Une matrice carrée (notée $\mathcal{M}_n(\K)$) est une matrice $\mathcal{M}_{n,m}(\K)$ d'un corps $\K$$n + m$.
\end{definition_sq} \end{definition_sq}
\begin{definition_sq} \label{definition:identity_matrix} \begin{definition_sq} \label{definition:identity_matrix}
@ -29,7 +52,7 @@ Un matrice est une structure qui permet de regrouper plusieurs éléments d'un c
\subsection{Trace} \subsection{Trace}
%TODO Complete subsection %TODO Complete subsection
$\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=1}^na_{kk}$ $\forall A \in \mathcal{M}_{n}, tr(A)=\sum_{k=0}^na_{kk}$
$tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$ $tr\in\mathcal{L}(\mathcal{M}_n(\K),\K)$
@ -58,12 +81,9 @@ $\function{D}{\mathcal{M}_{m\times n}(\R)}{R}$
\langsubsubsection{Axiomes}{Axioms} \langsubsubsection{Axiomes}{Axioms}
%%TODO Complete subsubsection %%TODO Complete subsubsection
$\forall M \in \mathcal{M}_{m\times n}$ $\forall M \in \mathcal{M}_{m\times n}$
\begin{itemize} \begin{itemize}
\item{$M' = \begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \end{pmatrix}M$} \item{$\forall \lambda \in \K, D(\lambda M) = \lambda D(M)$}
\item{$\forall \lambda \in K, D(\lambda M) = \lambda D(M)$}
\item{}
\end{itemize} \end{itemize}
\langsubsubsection{Cas 2x2}{2x2 case} \langsubsubsection{Cas 2x2}{2x2 case}
@ -148,38 +168,70 @@ $A \in \mathcal{T}^+_{n,n}$
$A = \begin{bmatrix}x_1, \cdots, x_n\end{bmatrix}$ $A = \begin{bmatrix}x_1, \cdots, x_n\end{bmatrix}$
\langsection{Espaces vectoriels}{Vectors spaces} \langsection{Espaces vectoriels}{Vectors spaces} \label{definition:vector_space}
%TODO Complete section %TODO Complete section
Soit $(E,+)$ un groupe abélien (i.e. commutatif) de $\mathbb{K}$ Soit $(E,+)$ un groupe abélien \ref{definition:abelian_group} de $\K$
\begin{itemize} \begin{itemize}
\item{muni d'une loi de composition interne notée $+$} \item{muni d'une loi de composition externe d'un corps $\K$ tel que $\K*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$}
\item{muni d'une loi de composition externe $\mathbb{K}*E \rightarrow E$ vérifiant $(\alpha,x) \rightarrow \alpha x$}
\end{itemize} \end{itemize}
\bigskip \bigskip
Et vérifiant $\forall(\alpha,\beta) \in \mathbb{K}, \forall(a,b,c) \in E$ Et vérifiant $\forall(\alpha,\beta) \in \K, \forall(a,b,c) \in E$
\begin{itemize} \begin{itemize}
\item{Commutativité $a + b = b + a$} \item{Unital en $*$}
\item{Associativité $(a + b) + c = a + (b + c)$} \item{Distributivité (gauche et droite) $+$ de $\K \Leftrightarrow a(\alpha+\beta)+(\alpha+\beta)a+\alpha a + \beta a$}
\item{Élement neutre de $+ \Leftrightarrow \exists 0_E \in E : a + 0_E = a$} \item{Distributivité (gauche et droite) $*$ de $\K \Leftrightarrow a(\alpha*\beta)+(\alpha*\beta)a+\alpha(\beta a)$}
\item{Élement neutre de $* \Leftrightarrow \exists 1_K \in K : a \cdot 1_K = a$}
\item{Élement opposé $\forall a \in E, \exists b \in E : a + b = b + a = 0_E$}
\item{Stabilité par $+ \Leftrightarrow a + b \in E$}
\item{Distributivité $+$ de $\mathbb{K} \Leftrightarrow (\alpha+\beta)a=\alpha a + \beta a$}
\item{Distributivité $*$ de $\mathbb{K} \Leftrightarrow (\alpha*\beta)a=\alpha(\beta a)$}
\end{itemize} \end{itemize}
\langsubsection{sous-espaces vectoriels}{Sub vector spaces} \langsubsection{Sous-espaces vectoriels}{Sub vector spaces} \label{definition:sub_vector_space}
%TODO Complete subsection %TODO Complete subsection
Soit $E$ un $\mathbb{K}$-espace vectoriel et $F \subset E$ Soit $E$ un $\K$-espace vectoriel \ref{definition:vector_space}, $F$ est une sous-espace vectoriel (i.e. « s.e.v ») si $F \subset E$ ainsi que les propriétés suivantes :
\begin{itemize} \begin{itemize}
\item{$F \ne \emptyset$} \item{$F \ne \emptyset$}
\item{$0_E \in F$} \item{$0_E \in F$}
\item{$\forall(\alpha,\beta)\in\mathbb{K}, \forall(x,y)\in F, \alpha x+\beta y\in F$} \item{$\forall(\alpha, \beta) \in \K, \forall(x,y)\in F, \alpha x + \beta y \in F$}
\end{itemize} \end{itemize}
\begin{theorem_sq} \label{theorem:union_sub_vector_spaces}
Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$. « $F \union G$ est un s.e.v de $E$ » $ \equivalance (F \subset G) \lor (G \subset F)$.
\end{theorem_sq}
\begin{proof}
Soit $F$ et $G$ s.e.v \ref{definition:sub_vector_space} de $E$.
\begin{centering}
$\implies$
\end{centering}
$(F \subset G) \lor (G \subset F) \implies (G $ s.e.v de $E) \lor (F $ s.e.v de $E) \implies (F \union G)$ s.e.v de $E$.
\begin{centering}
$\Leftarrow$
\end{centering}
$(F \union G) $ s.e.v de $E \land [(F \not\subset G) \land (G \not\subset F)]$
Let $x \in F \setminus G$ and $y \in G \setminus F$
$(F\union G)$ s.e.v de $E \implies x + y \in F \union G$
B.W.O.C let's suppose $x + y \in F \setminus G$
$\implies (x + y) - x \in F \setminus G$
$\implies y \in F \setminus G \land y \in G \setminus F \implies \bot$
By a similar argument $y \notin G \setminus F$
$\implies (y \notin F \setminus G) \land (y \notin G \setminus F) \implies \bot$
$\implies F \subset G \lor G \subset F$
\end{proof}

View File

@ -1,9 +1,27 @@
\langchapter{Théorie des Catégories}{Category theory} \langchapter{Théorie des Catégories}{Category theory}
%TODO Complete chapter %TODO Complete chapter
Category is a general theory of mathematical structures and their relations.
\langsection{Définition}{Definition}
A category $C$ is a collection of objects and morphisms
\langsection{Morphismes}{Morphisms} \langsection{Morphismes}{Morphisms}
%TODO Complete section %TODO Complete section
\langsubsection{Isomorphisme}{Isomorphism} \label{definition:isomorphism}
%TODO Complete section
\langsubsection{Endomorphisme}{Endomorphism} \label{definition:endomorphism}
%TODO Complete section
\langsubsection{Homomorphisme}{Homomorphism}
%TODO Complete section
\langsubsection{Homeomorphisme}{Homeomorphism}
%TODO Complete section
\section{Functors} \section{Functors}
%TODO Complete section %TODO Complete section

14
contents/definitions.tex Normal file
View File

@ -0,0 +1,14 @@
\langchapter{Définitions}{Definitions}
%TODO Complete chapter
\langsection{Psychologie}{Psychology}
%TODO Complete section
\langsubsubsection{Eleutheromanie}{Eleuteromania}
Eleutheromania, or eleutherophilia is "a mania or frantic zeal for freedom" \citereferences{carlyle_2005_french_revolution}.
The term is sometimes used in a psychological context, sometimes likening it to a mental disorder, such as John G Robertson's definition, that describes it as a mad zeal or irresistible craving for freedom \citereferences{robertson_2003_excess}.
However, it's also sometimes used to simply mean a passion for liberty \citereferences{tucker_1970_liberty}.
Individuals with this condition are called eleutheromaniacs \citereferences{wheeler_1910_literature}.
An antonym for the term is eleutherophobia. An individual that fears freedom is an eleutherophobe \citereferences{robertson_2003_excess}.

View File

@ -126,7 +126,7 @@ $\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}$
\langsection{Informatique}{Computer science} \langsection{Informatique}{Computer science}
%TODO Complete section %TODO Complete section
\subsection{LaTex} \subsection{LaTeX}
\begin{verbatim} \begin{verbatim}
\begin{verbatim} \begin{verbatim}

View File

@ -4,25 +4,31 @@
La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false). La logique consiste en des opérations effectuées uniquement sur des variables (notées $P,Q,R$) n'ayant pour valeur soit Vrai (noté \true), soit Faux (noté \false).
%Logic consists of operations done on sole values : True $T$ and False $F$. %Logic consists of operations done on sole values : True $T$ and False $F$.
\langsection{Principle de tiers exclu}{Excluding middle}
$\true \equivalance \lnot \false$
$\false \equivalance \lnot \true$
\langsection{Relation Binaires}{Binary relations} \langsection{Relation Binaires}{Binary relations}
%TODO Complete section %TODO Complete section
\langsubsection{Réflexion}{Reflexivity} \langsubsection{Réflexion}{Reflexivity} \label{definition:reflexivity}
% TODO Complete subsection % TODO Complete subsection
Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$. Une relation $\Rel$ sur $E$ est dite \textbf{réflexive} si et seulement si $\forall a \in E, a \Rel a$.
\langsubsection{Transitivité}{Transitivity} \langsubsection{Transitivité}{Transitivity} \label{definition:transitivity}
% TODO Complete subsection % TODO Complete subsection
Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$. Une relation $\Rel$ sur $E$ est dite \textbf{transitive} si et seulement si $\forall (a,b) \in E, a \Rel b \land b \Rel c \equivalance a \Rel c$.
\langsubsection{Associativité}{Associativity} \langsubsection{Associativité}{Associativity} \label{definition:associativity}
% TODO Complete subsection % TODO Complete subsection
Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$. Une relation $\Rel$ sur $E$ est dite \textbf{associative} si et seulement si $\forall (a,b) \in E, (a \Rel b) \Rel c \equivalance a \Rel (b \Rel c) \Leftrightarrow a \Rel b \Rel c$.
\langsubsection{Commutativité}{Commutativity} \langsubsection{Commutativité}{Commutativity} \label{definition:commutativity}
% TODO Complete subsection % TODO Complete subsection
Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$. Une relation $\Rel$ sur $E$ est dite \textbf{commutative} si et seulement si $\forall (a,b) \in E, a \Rel b = b \Rel a$.

View File

@ -86,7 +86,7 @@ Chaque application généré de $g_c$ avec $c \in \N^*$ est injective avec $\N$,
\begin{itemize} \label{theorem:totally_ordered_natural_numbers} \begin{itemize} \label{theorem:totally_ordered_natural_numbers}
\item{L'ensemble est totalement ordonnée : $\forall n \in \N, \exists k \suchas k = n + 1 \land n < k$} \item{L'ensemble est totalement ordonnée : $\forall n \in \N, \exists k \suchas k = n + 1 \land n < k$}
\item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{pair} \\ 2k+1 & \text{Impair} \end{cases}$} \item{On peut diviser l'ensemble en deux ensembles distincts : $\forall n \in \N, \exists! k \in \N \suchas n := \begin{cases} 2k & \text{paire} \\ 2k+1 & \text{Impaire} \end{cases}$}
\end{itemize} \end{itemize}
\begin{theorem_sq} \begin{theorem_sq}
@ -139,9 +139,9 @@ $\forall (p,q) \in \Q, \forall n \in \N^*, \frac{p}{q} \Leftrightarrow \frac{p \
\langsubsection{Opérateurs}{Operators} \langsubsection{Opérateurs}{Operators}
%TODO Complete subsection %TODO Complete subsection
$\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$ $\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} + \frac{a}{b} = \frac{pb + aq}{qb}$
$\forall ((p,q), (a,b)) \in \Q^2, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$ $\forall ((p,q), (a,b)) \in \Q, \frac{p}{q} \cdot \frac{a}{b} = \frac{pa}{qb}$
$\forall (p,q) \in \Q, \forall k \in \Z, (\frac{p}{q})^k = \frac{p^k}{q^k}$ $\forall (p,q) \in \Q, \forall k \in \Z, (\frac{p}{q})^k = \frac{p^k}{q^k}$
@ -172,8 +172,7 @@ $\functiondef{(p,q)}{P_1^{\frac{p}{|p|} + 1}P_2^pP_3^q}$
\langsubsection{Construction de CayleyDickson}{CayleyDickson's construction} \langsubsection{Construction de CayleyDickson}{CayleyDickson's construction}
%\citeannexes{wikipedia_cayley_dickson} Source: \citeannexes{wikipedia_cayley_dickson}
\citeannexes{project_vae}
\langsubsection{Coupes de Dedekind}{Dedekind's cuts} \langsubsection{Coupes de Dedekind}{Dedekind's cuts}
%TODO Complete subsection %TODO Complete subsection
@ -181,9 +180,9 @@ $\functiondef{(p,q)}{P_1^{\frac{p}{|p|} + 1}P_2^pP_3^q}$
\langsection{Construction des complexes $(\C)$}{Construction of complex numbers} \langsection{Construction des complexes $(\C)$}{Construction of complex numbers}
%TODO Complete section %TODO Complete section
\citeannexes{wikipedia_complex_numbers} Source: \citeannexes{wikipedia_complex_number}
$\C = (a,b) \in R^2, a + ib ~= \R^2 $ $\C = (a,b) \in R, a + ib ~= \R $
$i^2 = -1$ $i^2 = -1$
@ -204,7 +203,7 @@ $i^2 = -1$
\langsubsection{Relations binaries}{Binary relations} \langsubsection{Relations binaries}{Binary relations}
%TODO Complete subsection %TODO Complete subsection
$\forall ((a,b), (c,d)) \in \C^2, a = c \land b = d \Leftrightarrow a + ib = c + id$ $\forall ((a,b), (c,d)) \in \C, a = c \land b = d \Leftrightarrow a + ib = c + id$
\langsubsection{Opérateurs}{Operators} \langsubsection{Opérateurs}{Operators}
%TODO Complete subsection %TODO Complete subsection
@ -213,7 +212,7 @@ Il est impossible d'avoir une relation d'ordre dans le corps des complexes mais
\subsubsection{Ordre lexicographique} \subsubsection{Ordre lexicographique}
$\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases} $\forall((a,b),(c,d)) \in \C, a + ib \Rel_L c + id := \begin{cases}
a < c & \implies a + ib < c + id \\ a < c & \implies a + ib < c + id \\
\otherwise & \begin{cases} \otherwise & \begin{cases}
b < d & \implies a + ib < c + id \\ b < d & \implies a + ib < c + id \\
@ -223,7 +222,7 @@ $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases}
\section{Construction des quaternions $(\Hq)$} \section{Construction des quaternions $(\Hq)$}
\citeannexes{wikipedia_quaternion} Source: \citeannexes{wikipedia_quaternion}
\langsubsection{Table de Cayley}{Multiplication table} \langsubsection{Table de Cayley}{Multiplication table}
%TODO Complete subsection %TODO Complete subsection
@ -245,7 +244,7 @@ $\forall((a,b),(c,d)) \in \C^2, a + ib \Rel_L c + id := \begin{cases}
\section{Construction des octonions $(\Ot)$} \section{Construction des octonions $(\Ot)$}
\citeannexes{wikipedia_octonion} Source: \citeannexes{wikipedia_octonion}
\langsubsection{Table de multiplication}{Multiplication table} \langsubsection{Table de multiplication}{Multiplication table}
%TODO Complete subsection %TODO Complete subsection
@ -283,7 +282,7 @@ Où $\delta_{ij}$ est le symbole de Kronecker et $\epsilon_{ijk}$ est un tenseur
\section{Construction des sedenions $(\Se)$} \section{Construction des sedenions $(\Se)$}
\citeannexes{wikipedia_sedenion} Source: \citeannexes{wikipedia_sedenion}
\langsubsection{Table de multiplication}{Multiplication table} \langsubsection{Table de multiplication}{Multiplication table}
%TODO Complete subsection %TODO Complete subsection
@ -334,3 +333,40 @@ $\rightarrow\leftarrow$
$\implies |P| = \infty$ $\implies |P| = \infty$
Il existe une infinité de nombre premiers. Il existe une infinité de nombre premiers.
\langsubsection{Irrationnalité}{Irrationality}
\langsubsubsection{$\forall n \in \N, \sqrt{n}$ est soit un nombre premier ou un carré parfait}{$\sqrt{n}$ is either a prime number or a perfect square}
\begin{theorem_sq} \label{theorem:sqrt_prime}
$\Pn$ is the set of all prime numbers \ref{definition:prime_number}.
$\forall p \in \Pn, \sqrt{p} \notin \Q$
\end{theorem_sq}
The classical proof of the irrationality of 2 is a specific case of \ref{theorem:sqrt_prime}.
\begin{proof}
By contradiction let's assume $\sqrt{p} \in \Q$
$a \in \Z, b \in \N^*, \text{PGCD}(a,b) = 1, \sqrt{p} = \frac{a}{b}$
$\Rightarrow p = (\frac{a}{b})^2 = \frac{a^2}{b^2}$
$\Rightarrow b^2p = a^2$
$\Rightarrow p|a$
Let $c \in \N^*$, $a = pc$
$\Rightarrow b^2 p = (pc)^2=p^2c^2$
$\Rightarrow b^2 = pc^2$
$\Rightarrow p|b$
$\Rightarrow (p|b \land p|a \land \text{PGCD}(a,b)=1) \Rightarrow \bot$
$\Rightarrow \sqrt{p} \notin \Q$
\end{proof}

View File

@ -36,3 +36,14 @@ Stuffs
The Nation that makes a great distinction between its scholars and its warriors will have its thinking done by cowards and its fighting done by fools. The Nation that makes a great distinction between its scholars and its warriors will have its thinking done by cowards and its fighting done by fools.
\end{quote} \end{quote}
(Higher education and the military) (Higher education and the military)
\subsection{Albert Camus}
\begin{quote}
... ce, qu'on appelle une raison de vivre est en même temps une excellente raison de mourir.
\end{quote}
Le Mythe de Sysyphe: Chapitre 1
\subsection{Père de Raz}
\begin{quote}
Corps qui ni pète, ni rote est voué à l'éclatement.
\end{quote}

View File

@ -1,6 +1,8 @@
\langchapter{Théorie des ensembles}{Set theory} \label{set_theory} \langchapter{Théorie des ensembles}{Set theory} \label{set_theory}
%TODO Complete chapter %TODO Complete chapter
Source: \citeannexes{wikipedia_set_theory}
Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance. Un ensemble est une construction mathématiques qui réuni plusieurs objets en une même instance.
%A set is a mathematical construct to assemble multiple objects in a single instance. %A set is a mathematical construct to assemble multiple objects in a single instance.
@ -16,6 +18,10 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B
\langsubsection{Spécification}{Specification} \langsubsection{Spécification}{Specification}
%TODO Complete subsection %TODO Complete subsection
\langsubsection{Ensemble vide}{Empty set}
Il existe un ensemble vide notée $\emptyset$.
\langsubsection{Paire}{Pairing} \langsubsection{Paire}{Pairing}
%TODO Complete subsection %TODO Complete subsection
@ -24,13 +30,13 @@ $\forall A\forall B(\forall X(X \in A \Leftrightarrow X \in B) \Rightarrow A = B
Unite all elements of two given sets into one. Unite all elements of two given sets into one.
$n,m \in \N^+$ $n,m \in \N$
$A = \{a_1, \cdots, a_n\}$ $A = \{a_0, \cdots, a_n\}$
$B = \{b_1, \cdots, b_m\}$ $B = \{b_0, \cdots, b_m\}$
$A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$ $A \union B = \{a_0, \cdots, a_n, b_0, \cdots, b_m\}$
\langsubsection{Scheme of replacement}{Scheme of replacement} \langsubsection{Scheme of replacement}{Scheme of replacement}
%TODO Complete subsection %TODO Complete subsection
@ -41,38 +47,56 @@ $A \cup B = \{a_1, \cdots, a_n, b_1, \cdots, b_m\}$
\subsection{Power set} \subsection{Power set}
%TODO Complete subsection %TODO Complete subsection
For a set $S$ such that $|S| = n \Leftrightarrow \mathbf{P}(S) = 2^n$
\langsubsection{Choix}{Choice} \langsubsection{Choix}{Choice}
%TODO Complete subsection %TODO Complete subsection
\section{Intersection} \section{Intersection}
%TODO Complete subsection
Unite all common elements of two given sets into one.
$n,m,i \in \N$
$A = \{a_0, \cdots, a_n, c_0, \cdots, c_n\}$
$B = \{b_0, \cdots, b_m, c_0, \cdots, c_n\}$
$A \cap B = \{c_0, \cdots, c_n\}$
\langsection{Différence des sets}{Set difference} \langsection{Différence des sets}{Set difference}
%TODO Complete section %TODO Complete section
\langsection{Fonction}{Function} \langsection{Fonction}{Function}
%TODO Complete section
Une fonction $f$ est un opération qui permet de transformer un ou plusieurs éléments d'un set $A$ en d'autres éléments d'un set $B$. Source: \citeannexes{wikipedia_function_mathematics}
Une fonction $f$ est un tuple d'un domaine \citeannexes{wikipedia_domain_function} $A$ et un codomaine \citeannexes{wikipedia_codomain} $B$.
If the domain is the same as the codomain then the function is an endormorphsim \ref{definition:endomorphism} applied on set theory \ref{set_theory}.
\subsection{Notation} \subsection{Notation}
%TODO Complete subsection
$A \longrightarrow B$ $A \longrightarrow B$
$ x \longrightarrow f(x)$ $ x \longrightarrow f(x)$
\langsubsection{Injectivité}{Injectivity} \langsubsection{Injectivité}{Injectivity} \label{definition:injective}
%TODO Complete subsection
Source: \citeannexes{wikipedia_injective_function}
Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$. Une fonction $f$ de $E$ dans $F$ est dite \textbf{injective} si, et seulement si, $\forall (a,b) \in E, f(a) = f(b) \Rightarrow a = b$.
\langsubsection{Surjectivité}{Surjectivity} \langsubsection{Surjectivité}{Surjectivity} \label{definition:surjective}
%TODO Complete subsection
Source: \citeannexes{wikipedia_surjective_function}
Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$. Une fonction $f$ de $E$ dans $F$ est dite \textbf{surjective} si, et seulement si, $\forall y \in F, \exists x \in E : y = f(x)$.
\langsubsection{Bijectivité}{Bijectivity} \langsubsection{Bijectivité}{Bijectivity}
%TODO Complete subsection
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective et surjective ou $\forall y \in F, \exists! x \in E : y = f(x)$. Source: \citeannexes{wikipedia_bijection} \label{definition:bijection}
Une fonction $f$ de $E$ dans $F$ est dite \textbf{bijective} si, et seulement si, elle est à la fois injective \ref{definition:injective} et surjective \ref{definition:surjective} ou $\forall y \in F, \exists! x \in E : y = f(x)$.
Every bijection is an isomorphism \ref{definition:isomorphism} applied on set theory \ref{set_theory}.

View File

@ -130,7 +130,7 @@ Toute sous-suites (ou suites extraite) d'un suite convergente vers $l \in E$ con
Montrer que lensemble $\{x_n, n \in \N\}$ est borné. Montrer que lensemble $\{x_n, n \in \N\}$ est borné.
\\ \\
Sachant que $(x_n) \ in E$ converge vers $l \in E$ \&\& $\epsilon > 0$. Sachant que $(x_n) \in E$ converge vers $l \in E \land \epsilon > 0$.
$\Leftrightarrow \exists y \in E$ tel que $\{\forall n \in \N, x_n, l\} \subset \bar{\mathbb{B}}(y, \epsilon) \subset E$. $\Leftrightarrow \exists y \in E$ tel que $\{\forall n \in \N, x_n, l\} \subset \bar{\mathbb{B}}(y, \epsilon) \subset E$.

View File

@ -77,6 +77,7 @@ De de manière honteusement démagogique, je vous remercie tout lecteurs de ce n
\input{contents/music_theory} \input{contents/music_theory}
\input{contents/philosophy} \input{contents/philosophy}
\input{contents/linguistic} \input{contents/linguistic}
\input{contents/definitions}
\addcontentsline{toc}{chapter}{Références} \addcontentsline{toc}{chapter}{Références}
\begingroup \begingroup

View File

@ -1,4 +1,7 @@
\ProvidesPackage{language_selector} \ProvidesPackage{packages/language_selector}
\newcommand{\subsubsubsection}[1]{\paragraph{#1}\smallskip}
\newcommand{\subsubsubsubsection}[1]{\subparagraph{#1}\smallskip}
\DeclareOption{french}{ \DeclareOption{french}{
\def\langoption{french} \def\langoption{french}
@ -9,6 +12,7 @@
\newcommand{\langsubsection}[2]{\subsection{#1}} \newcommand{\langsubsection}[2]{\subsection{#1}}
\newcommand{\langsubsubsection}[2]{\subsubsection{#1}} \newcommand{\langsubsubsection}[2]{\subsubsection{#1}}
\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#1}} \newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#1}}
\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#1}}
\newcommand{\langnewcites}[3]{\newcites{#1}{#2}} \newcommand{\langnewcites}[3]{\newcites{#1}{#2}}
} }
@ -21,6 +25,7 @@
\newcommand{\langsubsection}[2]{\subsection{#2}} \newcommand{\langsubsection}[2]{\subsection{#2}}
\newcommand{\langsubsubsection}[2]{\subsubsection{#2}} \newcommand{\langsubsubsection}[2]{\subsubsection{#2}}
\newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#2}} \newcommand{\langsubsubsubsection}[2]{\subsubsubsection{#2}}
\newcommand{\langsubsubsubsubsection}[2]{\subsubsubsubsection{#2}}
\newcommand{\langnewcites}[3]{\newcites{#1}{#3}} \newcommand{\langnewcites}[3]{\newcites{#1}{#3}}
} }

View File

@ -1,7 +1,9 @@
\ProvidesPackage{macros} \ProvidesPackage{packages/macros}
\RequirePackage{amsfonts} % Include missing symbols s.a "Natural Numbers" \RequirePackage{amsfonts} % Include missing symbols s.a "Natural Numbers"
\usepackage{amsthm} % for 'proof' environment
% Snippet to add dots to TOC % Snippet to add dots to TOC
% Thanks to "user11232" at https://tex.stackexchange.com/questions/53898/how-to-get-lines-with-dots-in-the-table-of-contents-for-sections % Thanks to "user11232" at https://tex.stackexchange.com/questions/53898/how-to-get-lines-with-dots-in-the-table-of-contents-for-sections
%\usepackage{tocloft} %\usepackage{tocloft}
@ -42,6 +44,7 @@
\newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2} \newcommand{\functiondef}[2]{\hspace{15pt}#1 \longmapsto #2}
\newcommand{\otherwise}{\text{Sinon}} \newcommand{\otherwise}{\text{Sinon}}
%\newcommand{\otherwise}{\text{Otherwise}} %\newcommand{\otherwise}{\text{Otherwise}}
\DeclareMathOperator{\union}{\cup}
\renewcommand{\smallskip}{\vspace{3pt}} \renewcommand{\smallskip}{\vspace{3pt}}
\renewcommand{\medskip}{\vspace{6pt}} \renewcommand{\medskip}{\vspace{6pt}}

View File

@ -1,4 +1,4 @@
\ProvidesPackage{themes} \ProvidesPackage{packages/themes}
% Add many functions for colour themes % Add many functions for colour themes
\RequirePackage{xcolor} \RequirePackage{xcolor}

View File

@ -287,7 +287,7 @@
} }
@online{wikipedia_complex_number, @online{wikipedia_complex_number,
title = {Complex number}, title = {Complex number},
url = {https://en.wikipedia.org/wiki/Complex_number} url = {https://en.wikipedia.org/wiki/Complex\_number}
} }
@online{wikipedia_quaternion, @online{wikipedia_quaternion,
title = {Quaternion}, title = {Quaternion},
@ -301,3 +301,35 @@
title = {Sedenion}, title = {Sedenion},
url = {https://en.wikipedia.org/wiki/Sedenion} url = {https://en.wikipedia.org/wiki/Sedenion}
} }
@online{wikipedia_function_mathematics,
title = {Function (mathematics)},
url = {https://en.wikipedia.org/wiki/Function\_(mathematics)}
}
@online{wikipedia_domain_function,
title = {Domain of a function},
url = {https://en.wikipedia.org/wiki/Domain\_of\_a\_function}
}
@online{wikipedia_codomain,
title = {Codomain},
url = {https://en.wikipedia.org/wiki/Codomain}
}
@online{wikipedia_set_theory,
title = {Set theory},
url = {https://en.wikipedia.org/wiki/Set\_theory}
}
@online{wikipedia_injective_function,
title = {Injective function},
url = {https://en.wikipedia.org/wiki/Injective\_function}
}
@online{wikipedia_surjective_function,
title = {Surjective function},
url = {https://en.wikipedia.org/wiki/Surjective\_function}
}
@online{wikipedia_bijection,
title = {Bijection},
url = {https://en.wikipedia.org/wiki/Bijection}
}
@online{wikipedia_hyperbolic_functions,
title = {Hyperbolic functions},
url = {https://en.wikipedia.org/wiki/Hyperbolic\_functions}
}

View File

@ -433,3 +433,39 @@ in a principled way.},
biburl = {https://dblp.org/rec/journals/corr/abs-2012-00152.bib}, biburl = {https://dblp.org/rec/journals/corr/abs-2012-00152.bib},
bibsource = {dblp computer science bibliography, https://dblp.org} bibsource = {dblp computer science bibliography, https://dblp.org}
} }
@book{carlyle_2005_french_revolution,
title = {The French Revolution},
author = {Carlyle, T. and Ball, A.H.R.},
isbn = {9780486445137},
page = {242},
lccn = {2005047548},
series = {Dover Value Editions},
year = {2005},
publisher = {Dover Publications}
}
@book{robertson_2003_excess,
title = {An Excess of Phobias and Manias},
author = {John G. Robertson},
page = {75},
isbn = {9780963091932},
year = {2003},
publisher = {Senior Scribe Publications}
}
@book{tucker_1970_liberty,
title = {Liberty},
author = {Benjamin Ricketson Tucker},
page = {361},
volumes = {235,312},
year = {1970},
number = {vol.~9~{\`a}~10~;vol.~235~{\`a}~312},
lccn = {72022711},
series = {Radical periodicals in the United States},
publisher = {Greenwood Reprint Corporation}
}
@book{wheeler_1910_literature,
title = {Current Literature},
author = {Edward Jewitt Wheeler},
page = {564},
volumes = {49},
year = {1910}
}